Stand: 20. November 2019

Studienordnung der Fakultät für Mathematik und Informatik für den Studiengang Mathematik mit dem Abschluss Bachelor of Science vom 14. Juli 2010

(Verkündungsblatt der Friedrich-Schiller-Universität Jena Nr. 7/2010 S. 261)

unter Berücksichtigung der Ersten Änderung vom 20. Juni 2012 (Verkündungsblatt der Friedrich-Schiller-Universität Jena Nr. 8/2012 S.245)

unter Berücksichtigung der Zweiten Änderung vom 6. Mai 2015 (Verkündungsblatt der Friedrich-Schiller-Universität Jena Nr. 6/2015 S.93)

Gemäß § 3 Abs. 1 i.V. mit § 34 Abs. 3 Satz 1 Thüringer Hochschulgesetz (ThürHG) vom 21. Dezember 2006 (GVBI. S. 601), zuletzt geändert durch Art. 12 des Gesetzes vom 12. August 2014 (GVBI. S. 472), erlässt die Friedrich-Schiller-Universität Jena folgende Zweite Änderung der Studienordnung vom 14. Juli 2010 (Verkündungsblatt der Friedrich-Schiller-Universität Jena 7/2010, S. 261), geändert durch die Erste Änderungsordnung vom 20. Juni 2012 (Verkündungsblatt der Friedrich-Schiller-Universität Jena 8/2012, S. 245). Der Rat der Fakultät für Mathematik und Informatik hat die Änderung am 11. Februar 2015 beschlossen; der Senat der Friedrich-Schiller-Universität Jena hat am 5. Mai 2015 der Änderung zugestimmt.

Der Präsident der Friedrich-Schiller-Universität Jena hat die Ordnung am 6. Mai 2015 genehmigt.

§ 1 Geltungsbereich

¹Diese Studienordnung regelt Ziele, Inhalte und Aufbau des Studiums im Studiengang Mathematik mit dem Abschluss Bachelor of Science (abgekürzt: "B.Sc.") an der Fakultät für Mathematik und Informatik der Friedrich-Schiller-Universität Jena. ²Sie gilt im Zusammenhang mit der zugehörigen Prüfungsordnung (im Folgenden: BPO) in der jeweils geltenden Fassung und dem vom Rat der Fakultät verabschiedeten Regelstudienplan und Modulkatalog.

§ 2 Zulassungsvoraussetzungen

(1) Die Voraussetzung für die Zulassung zum Studium ist die allgemeine oder eine einschlägige fachgebundene Hochschulreife oder ein von der zuständigen staatlichen Stelle als gleichwertig anerkanntes Zeugnis (§ 60 ThürHG).

(2) ¹Es ist notwendig, sich fachspezifische Kenntnisse in einer lebenden Fremdsprache – in der Regel Englisch – anzueignen. ²Eine Nachweispflicht besteht nicht. ³Programmierkenntnisse werden nicht vorausgesetzt.

§ 3 Studiendauer

- Die Regelstudienzeit beträgt sechs Semester im Vollzeitstudium bzw. zwölf Semester im Teilzeitstudium; dieser Zeitraum umfasst auch die Bachelor-Prüfung inklusive der Anfertigung der Bachelor-Arbeit.
- (2) Die Universität stellt sicher, dass das Studium in der vorgesehenen Regelstudienzeit absolviert werden kann.

§ 4 Studienbeginn

¹Das Bachelor-Studium beginnt im Wintersemester. ²Dringend empfohlen wird die Teilnahme am mathematischen Vorkurs der Fakultät, der in den Wochen vor dem Beginn der eigentlichen Vorlesungszeit stattfindet.

§ 5 Ziel des Studiums

- (1) ¹Ziel des Mathematik-Studiums mit dem ersten berufsqualifizierenden Abschluss Bachelor of Science ist es, die Studierenden auf die berufliche Tätigkeit vorzubereiten bzw. mit einer breit angelegten Ausbildung in den wissenschaftlichen Grundlagen der Mathematik die Basis für weitere Aus- oder Weiterbildungsabschnitte innerhalb oder außerhalb der Hochschule zu legen. ²Für das konsekutive Studium der Mathematik bildet der qualifiziert abgeschlossene Bachelor-Studiengang die erste Stufe und stellt eine Eingangsvoraussetzung für den stärker forschungsorientierten Masterstudiengang Mathematik an der Fakultät für Mathematik und Informatik der Friedrich-Schiller-Universität Jena dar.
- (2) ¹Die Studierenden erwerben Kenntnisse der fachlichen Systematik, Begrifflichkeit und grundlegender Inhalte der Mathematik sowie die für das mathematische Arbeiten erforderlichen theoretischen und praktischen Kenntnisse. ²Entsprechend dem besonderen Forschungsprofil der Fakultät für Mathematik und Informatik in Jena werden zudem vertiefte Kenntnisse aus den Bereichen der Algebra, der Analysis, der Geometrie, der Numerischen Mathematik/Wissenschaftliches Rechnen, der Optimierung, der Stochastik und der Algorithmik (Theoretische Informatik) vermittelt.
- (3) ¹Nach erfolgreichem Studienabschluss haben die Studierenden das für ein breites und sich ständig wandelndes Berufsfeld erforderliche grundlegende Fachwissen sowie fachliche und überfachliche Schlüsselqualifikationen erworben. ²Sie sind befähigt, sich fachwissenschaftliche Informationen eigenständig zu erschließen, zu strukturieren und anzueignen, das erworbene Wissen kritisch einzuordnen sowie erworbene Kenntnisse und Fähigkeiten anzuwenden. ³Sie haben methodische und soziale Kompetenzen erworben, die es ihnen erlauben, das Wissen flexibel anzuwenden und sind zur Teamarbeit befähigt.

§ 6 Aufbau des Studiums

- (1) ¹Das Studienangebot ist modular aufgebaut. ²Einzelne Module werden durch unterschiedliche Lehr- und Arbeitsformen wie Vorlesungen mit Übungen, Seminare, praktische Programmier- Übungen, Projekte, Exkursionen, selbstständige Studien und Prüfungen gebildet. ³Jedes Modul bildet eine Lern- und Prüfungseinheit, die mit dem Ergebnis auf dem Zeugnis dokumentiert wird. ⁴Ein Modul erstreckt sich in der Regel über ein Semester, kann aber auch Inhalte mehrerer Semester umfassen. ⁵Die Arbeitsbelastung durch Absolvierung eines Moduls wird in Leistungspunkten (LP) angegeben.
- (2) ¹Das Studium gliedert sich in Module der Mathematik (insgesamt 138 LP), Nebenfach-Module und Module zum Erwerb allgemeiner Schlüsselqualifikationen (zusammen 30 LP). ²Mit der Bachelor-Arbeit (12 LP) wird das Studium abgeschlossen.
- (3) ¹Im Studium wird zwischen Pflicht- und Wahlpflichtmodulen unterschieden, um den Studierenden eine Schwerpunktbildung zu ermöglichen. ²Ab dem vierten Semester sind fast alle Mathematik-Module Wahlpflichtmodule. ³Zu den wählbaren Vertiefungsrichtungen gehören Algebra, Analysis, Geometrie, Numerische Mathematik/Wissenschaftliches Rechnen, Optimierung, Stochastik und Algorithmik (Theoretische Informatik).
- (4) ¹Im Bereich der Mathematik kann es sinnvoll sein, auch schon Module aus dem Angebot des Masterstudiums der Mathematik zu absolvieren. ²Konkret dürfen auf Antrag Module des Masterniveaus im Umfang von bis zu 12 LP belegt werden.
- (5) ¹Im Bereich "Nebenfach und Allgemeine Schlüsselqualifikationen" müssen insgesamt 30 LP erworben werden. ²Davon müssen mindestens 15 LP aus dem gewählten Nebenfach und mindestens 6 LP aus den Modulen zum Erwerb allgemeiner Schlüsselqualifikationen erworben werden.
- (6) ¹Mathematik-Module machen mehr als 80% des Studiums aus. ²Über die Studienjahre werden aufbauende Qualifikationen und Kompetenzen vermittelt.
 - a) Im ersten Studienjahr werden unter dem Leitziel "Grundwissen reine Mathematik" folgende Kenntnisse, Fertigkeiten und Kompetenzen entwickelt:
 - Orientierung und Ausgleich von Vorkenntnissen
 - Mathematisches Denken und Grundwissen
 - Erwerb von Grundkenntnissen der Analysis, linearen Algebra und analytischen Geometrie
 - Einführung in die Computer-Programmierung
 - b) "Grundwissen angewandte Mathematik" ist das Hauptthema der Module im dritten Fachsemester (zzgl. Modul "Statistische Verfahren" im fünften Semester):
 - Einführung in Numerische Mathematik/Wissenschaftliches Rechnen und Stochastik: beide sowohl theoretisch als auch praktisch
 - Erweiterung der Fähigkeiten in der Rechnernutzung
 - Team-orientiertes Arbeiten an mathematischen Praxisproblemen
 - Mathematische Modellierung von Problemen der wirklichen Welt

- c) Ab dem vierten Fachsemester zielen die Lernangebote auf Ausbau der erworbenen Kenntnisse, und ab dem fünften Semester wird eine Vertiefungsrichtung vertieft studiert. Somit werden die bisher erworbenen Kenntnisse, Fertigkeiten und Kompetenzen ergänzt durch:
 - Spezialvorlesungen
 - Selbstständige Erarbeitung und Präsentation von Expertenwissen (in einem Seminar)
 - Schwerpunktsetzung und Anwendung erlernter Kenntnisse und Fertigkeiten
 - Erweiterung des fächerübergreifenden Kontextwissens
 - Planung und Durchführung der Bachelor-Arbeit als wissenschaftliches Projekt

§ 7 Umfang und Inhalte des Studiums

- (1) ¹Das Studium umfasst eine Gesamtleistung von 180 Leistungspunkten (LP) nach dem European Credit Transfer and Accumulation System (ECTS). ²Pro Studienjahr sind im Mittel 60 Leistungspunkte zu erwerben. ³Für die Vergabe eines Leistungspunktes wird entsprechend den Vorgaben im European Credit Transfer and Accumulation System (ECTS) eine Arbeitsbelastung des Studierenden im Präsenz- und Selbststudium von 30 Stunden angenommen.
- (2) Der Mathematik-Pflichtteil des Studiums umfasst folgende Module im Umfang von 75 LP:
 - a) Im ersten Studienjahr

•	Analysis 1 und 2	(je 9 LP)
•	Lineare Algebra/Geometrie 1 und 2	(je 9 LP)
•	Gewöhnliche Differentialgleichungen	(6 LP)
•	Programmieren in C/C++	(3LP)

b) Im zweiten Studienjahr

•	Stochastik 1	(9 LP)
•	Ein Proseminar	(3 LP)
•	Einführung in die Numerische Mathematik und	
	das Wissenschaftliche Rechnen	(9 LP)
•	Verfahren der Numerischen Mathematik und	
	des wissenschaftlichen Rechnens im Einsatz	(3 LP)

c) Im dritten Studienjahr

Statistische Verfahren (6 LP)

(3) ¹Erweiterung und Weiterführung: Ab dem vierten Fachsemester – oder sogar ab dem dritten – werden Mathematik-Wahlpflichtmodule im Umfang von 45 LP gewählt. ²Dabei müssen mindestens 18 LP in der Reinen Mathematik und mindestens 9 LP in der Angewandten Mathematik/Stochastik erreicht werden (Einordnung entsprechend der Liste im Modulkatalog). ³Soll die Phase "Erweiterung und Weiterführung" bereits im dritten Semester anfangen – wie z.B. in den Fächern Analysis und Optimierung –, so wird empfohlen, keine Nebenfach-Module im dritten Semester zu belegen.

(4) ¹Vertiefung: Um einen Schwerpunkt zu bilden, wird im dritten Jahr eine Vertiefungsrichtung gewählt. ²Zusätzlich zu den Modulen in Abs. 3 sind in der gewählten Vertiefung die folgenden Module zu belegen

•	Vertiefungsmodule	(15 LP)
•	Ein Seminar im gewählten Vertiefungsfach	(3 LP)
•	Bachelor-Arbeit	(12 LP).

³Um eine sinnvolle Kombination von Vertiefungs-Modulen zu erreichen wird empfohlen, vor Beginn des vierten Semesters ein informales Beratungsgespräch mit einem möglichen Betreuer der Bachelor-Arbeit zu suchen. ⁴Zu diesem Zweck erstellt jedes Fach einen Vertiefungsplan (s. Anhang 2). ⁵Die Einordnung von Vertiefungsmodulen zu (3) oder zu (4) kann auch nachträglich vorgenommen werden, spätestens aber zum Zeitpunkt der Vergabe der Bachelor-Arbeit.

- (5) ¹Im Bereich "Nebenfach und Allgemeine Schlüsselqualifikationen" müssen insgesamt 30 LP erworben werden. ²Davon müssen mindestens 15 LP aus dem gewählten Nebenfach und mindestens 6 LP aus den Modulen zum Erwerb allgemeiner Schlüsselqualifikationen erworben werden.
 - a) Ein Nebenfach muss gewählt werden. In diesem Nebenfach sind mindestens 15 LP zu erwerben. Als Nebenfach stehen zur Auswahl:
 - Computational Neuroscience
 - Informatik
 - Linguistik mit Schwerpunkt Computerlinguistik/Sprachtechnologie
 - Ökologie
 - Philosophie
 - Physik
 - Psychologie
 - Wirtschaftswissenschaften
 - Soziologie

Für jedes dieser Nebenfächer werden Nebenfach-Bestimmungen erlassen (s. Anhang 1). Darüber hinaus kann der Prüfungsausschuss bei Bedarf weitere Nebenfächer einrichten bzw. im Einzelfall zulassen. Das Nebenfach kann einmalig gewechselt werden. Dazu muss ein Antrag an den Prüfungsausschuss gestellt werden. Dem Antrag wird entsprochen, wenn keine Prüfung im Nebenfach endgültig nicht bestanden ist und das Studium in der Frist gemäß §17 Abs. 3 der Prüfungsordnung abgeschlossen werden kann.

- b) Aus den an der Friedrich-Schiller-Universität angebotenen Modulen zum Erwerb allgemeiner Schlüsselqualifikationen können Module im Umfang von mindestens 6 Leistungspunkten frei ausgewählt werden.
- c) Die verbleibenden 9 Leistungspunkte können frei gewählt werden aus: Modulen zum Erwerb allgemeiner Schlüsselqualifikationen; weiteren Modulen im gewählten Nebenfach; und Modulen aus einem anderen Nebenfach.

- (6) ¹Die Bachelor-Arbeit schließt das Studium ab. ²Sie kann wahlweise in einem der Bereiche Algebra, Analysis, Geometrie, Numerische Mathematik/Wissenschaftliches Rechnen, Optimierung, Stochastik, Algorithmik (Theoretische Informatik) oder in Zusammenarbeit eines der Lehrstühle mit einem Unternehmen geschrieben werden. ³Es wird empfohlen, die Vertiefungsmodule und das Seminar aus Abs. 4 so zu wählen, dass sie als Vorbereitung für die Bachelor-Arbeit dienen.
- (7) ¹Die Beschreibung der Pflicht- und Wahlpflichtmodule ist dem Modulkatalog zu entnehmen.
 ²Eine Modulbeschreibung informiert über den oder die Modulverantwortlichen, die Voraussetzungen zur Teilnahme, die Verwendbarkeit, die Art des Moduls (Pflicht- oder Wahlpflichtmodul), die Lehr- und Arbeitsformen, den Arbeitsaufwand und die zu erreichenden Leistungspunkte, die Inhalte und Qualifikationsziele des Moduls, die Voraussetzungen zur Vergabe von Leistungspunkten sowie die Art der Prüfungsleistungen und deren Gewichtung für die Modulnote. ³Die Modulbeschreibung informiert auch über die Häufigkeit des Angebotes des Moduls sowie die Dauer.

§ 8 Internationale Mobilität der Studierenden

- (1) ¹Zur Ergänzung des Studiums ist ein Studienaufenthalt im Ausland sinnvoll. ²Bei einem Auslandsaufenthalt während des Studiums erbrachte Studien- und Prüfungsleistungen werden anerkannt, soweit die Gleichwertigkeit festgestellt ist; dies gilt auch, wenn der Studierende während des Auslandsaufenthaltes beurlaubt war. ³Bei Abschluss einer Vereinbarung über das zu absolvierende Programm ("Learning Agreement") können bereits verbindliche Festlegungen hinsichtlich später anzuerkennender Studien- und Prüfungsleistungen getroffen werden.
- (2) ¹Unterschiedliche Semestertermine an ausländischen Einrichtungen können zu zeitlichen Überschneidungen mit Prüfungszeiträumen an der Heimatuniversität führen. ²In solchen Fällen ermöglicht der Prüfungsausschuss auf Antrag eine individuelle Regelung zur Ablegung der betroffenen Modulprüfungen zu einem angemessenen Zeitpunkt.

§ 9 Studien- und Prüfungsleistungen

¹Art und Umfang der Studien- und Prüfungsleistungen der Bachelor-Prüfung sind durch die Prüfungsordnung in Verbindung mit dem Regelstudienplan und dem Modulkatalog geregelt. ²Die Prüfungsformen für die einzelnen Modulprüfungen und die Gewichtung von Teilprüfungen sind den Modulbeschreibungen im Modulkatalog zu entnehmen. ³Die jeweiligen Prüfungszeiträume werden vom Prüfungsausschuss festgelegt. ⁴Modulverantwortliche und Prüfer können im Rahmen der Vorgaben der Prüfungsordnung den Umfang von Prüfungsleistungen festlegen. ⁵Die Termine für Prüfungen und weitere Festlegungen werden rechtzeitig durch das Prüfungsamt oder die im Modul eigenverantwortlich Lehrenden bekannt gegeben.

§ 10 Zulassung zu einzelnen Modulen

(1) Die Zulassung zu Modulen höherer Semester setzt möglicherweise den erfolgreichen Abschluss von Modulen aus vorangegangenen Semestern voraus (siehe die folgende Tabelle):

Modulcode	Zulassungsvoraussetzung
Stochastik 1 (Einführung in die	Analysis 1 FMI-MA0201
Wahrscheinlichkeitstheorie u. Statistik)	Analysis 2 FMI-MA0202
FMI-MA0701	Algebra/Geometrie 1 FMI-MA0301
	Algebra/Geometrie 2 FMI-MA0302
Einführung in die Numerische Mathematik und	Analysis 1 FMI-MA0201
das Wissenschaftliche Rechnen FMI-MA0500	Algebra/Geometrie 1 FMI-MA0301
Verfahren der Numerischen Mathematik und des	Einführung in die Numerische Mathematik und
Wissenschaftlichen Rechnens im Einsatz	das Wissenschaftliche Rechnen FMI-MA0500
FMI-MA0501	
Algebra 1 FMI-MA0101	Algebra/Geometrie 1 FMI-MA0301
Gruppentheorie FMI-MA0106	Algebra 1 FMI-MA0101
Seminar Algebra- Bachelor FMI-MA0182	Algebra 1 FMI-MA0101
Analysis 3 FMI-MA0203	Analysis 1 FMI-MA0201
	Algebra/Geometrie 1 FMI-MA0301
Approximationstheorie 1 FMI-MA0204	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Stabilität dynamischer Systeme 1 – 6 LP	Analysis 1 FMI-MA0201
FMI-MA0261	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Stabilität dynamischer Systeme 1 – 9 LP	Analysis 1 FMI-MA0201
FMI-MA0241	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Fourieranalysis 1 FMI-MA0202	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Funktionentheorie 1 FMI-MA0243	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202

Höhere Analysis 1 FMI-MA0207	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Sturm-Liouvillesche Eigenwertprobleme	Analysis 1 FMI-MA0201
FMI-MA0291	Analysis 2 FMI-MA0202
	Gewöhnliche Differentialgleichungen FMI- MA0244
Distributionen FMI-MA0289	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Seminar Analysis – Bachelor FMI-MA0282	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
Klassische Differentialgeometrie FMI-MA0446	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Klassische Differentialgeometrie mit Übung FMI-	Analysis 1 FMI-MA0201
MA0406	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Konvexe und metrische Geometrie FMI-MA0444	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Konvexe und metrische Geometrie mit Übung	Analysis 1 FMI-MA0201
FMI-MA0404	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Mathematische Methoden der klassischen	Analysis 1 FMI-MA0201
Mechanik FMI-MA0445	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Mathematische Methoden der klassischen	Analysis 1 FMI-MA0201
Mechanik mit Übung FMI-MA0405	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
Seminar Geometrie – Bachelor FMI-MA0482	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301

Numerik gewöhnlicher Differential-	Einführung in die Numerische Mathematik und
gleichungen 1 FMI-MA0531	das Wissenschaftliche Rechnen FMI-MA0500
Weiterführende Techniken des	Einführung in die Numerische Mathematik und
Wissenschaftlichen Rechnens FMI-MA0530	das Wissenschaftliche Rechnen FMI-MA0500
Proseminar Numerische Mathematik	Analysis 1 FMI-MA0201
FMI-MA0552	
Seminar Wissenschaftliches Rechnen -	Einführung in die Numerische Mathematik und
Bachelor FMI-MA0510	das Wissenschaftliche Rechnen FMI-MA0500
Lineare Optimierung FMI-MA0601	Algebra/Geometrie 1 FMI-MA0301
Praktische Optimierung FMI-MA0691	Lineare Optimierung FMI-MA0601
Einführung in die diskrete Optimierung	Grundkenntnisse aus dem Modul Lineare
FMI-MA0642	Optimierung FMI-MA0601
	Programmiersprache oder MatLab
Seminar Optimierung – Bachelor FMI-MA0681	Lineare Optimierung FMI-MA0601
Finanzmathematik 1 FMI-MA0704	Stochastik 1 FMI-MA0701
Ökonometrie FMI-MA0705	Stochastik 1 FMI-MA0701
Stochastik 2 FMI-MA0702	Stochastik 1 FMI-MA0701
Proseminar Stochastik FMI-MA0791	Analysis 1 FMI-MA0201
	Algebra/Geometrie 1 FMI-MA0301
Seminar Statistik – Bachelor FMI-MA0781	Stochastik 1 FMI-MA0701
Seminar Wahrscheinlichkeitstheorie – Bachelor	Stochastik 1 FMI-MA0701
FMI-MA0782	
Einführung in die Textlinguistik (Text)	Modul B-GSW-02
B-GSW-04	
Einführung in die Computerlinguistik und	B-GSW-01 bis B-GSW-04
Sprachtechnologie BG-SW-12	
Natur- und Umweltschutz 1 Ök NF 2.1	Teilnahme am Modul Ök NF 1
Pflanzenökologie 1 Ök NF 2.2	Teilnahme am Modul Ök NF 1
Pflanzenökologie 1 + 2 Ök NF 2.22	Teilnahme am Modul Ök NF 1
Humanökologie Ok NF 2.3	Teilnahme am Modul Ök NF 1
Theoretische Ökologie 1 Ok NF 2.4	Teilnahme am Modul Ök NF 1
Theoretische Ökologie 1 + 2 ÖK NF 2.44	Teilnahme am Modul Ök NF 1
Natur- und Umweltschutz 2 Ök NF 2.5	Teilnahme am Modul Ök NF 1
Mathematische Biologie 1 Ök NF 2.6	Teilnahme am Modul Ök NF 1

Mathematische Biologie 1 + 2 Ök NF 2.66	Teilnahme am Modul Ök NF 1
Bachelor-Arbeit FMI-MA0999	B.Sc. Mathematik: 140 LP gemäß Regelstudienplan vgl. Prüfungsordnung §18(2)
Angewandte Probleme von Algebra und	Analysis 1 FMI-MA0201
Geometrie - 3 LP FMI-MA0448	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
	Algebra/Geometrie 2 FMI-MA0302
Angewandte Probleme von Algebra und	Analysis 1 FMI-MA0201
Geometrie - 6 LP FMI-MA0449	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
	Algebra/Geometrie 2 FMI-MA0302
Fraktale Geometrie - 6 LP FMI-MA0442	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
	Algebra/Geometrie 2 FMI-MA0302
Fraktale Geometrie - 9 LP FMI-MA0402	Analysis 1 FMI-MA0201
	Analysis 2 FMI-MA0202
	Algebra/Geometrie 1 FMI-MA0301
	Algebra/Geometrie 2 FMI-MA0302
Polyedergeometrie FMI-MA0447	Analysis 1 FMI-MA0201
	Algebra/Geometrie 1 FMI-MA0301
Seminar Optimierung – Bachelor FMI-MA0681	Lineare Optimierung FMI-MA0601 oder
	Einführung in die Diskrete Optimierung FMI- MA0642 oder
	Einführung in die nichtlineare Optimierung FMI- MA0643 oder
	Diskrete Optimierung FMI-MA0602 oder
	Nichtlineare Optimierung FMI-MA0603
Statistische Verfahren FMI-MA0741	Stochastik 1 FMI-MA0701
Signal- und systemtheoretische Analyse elektrophysiologischer Daten I	FMI-IN0025 Grundlagen informatischer Problemlösung
MED-CNS014	
Bildgebende Verfahren und Systeme II	Bildgebende Verfahren und Systeme I MED- CNS001

Signal- und systemtheoretische Analyse elektrophysiologischer Daten II	FMI-IN0025 Grundlagen informatischer Problemlösung
MED-CNS015	FMI-IN0075 Objektorientierte Programmierung
Spezialverfahren der medizinischen Bildverarbeitung	Bildgebende Verfahren und Systeme I MED- CNS009
Grundlagen der Modellierung neuronaler Systeme	Grundlagen der Neurophysiologie MED- CNS0009
	Einführung in die Wahrscheinlichkeitstheorie FMI-MA0007

- (2) ¹Modulprüfungen in Modulen, die Voraussetzung für die Zulassung zu einem Modul des folgenden Semesters sind, werden so organisiert, dass das Modulergebnis unter Berücksichtigung einer Wiederholungsmöglichkeit bis zum Beginn der folgenden Vorlesungszeit festgestellt ist. ²Allerdings kann die Fakultät die Anwendbarkeit dieser Regel für Nebenfach-Module nicht garantieren, außer für das Nebenfach Informatik.
- (3) Für einzelne Wahlpflichtmodule kann die Teilnehmerzahl beschränkt werden, wenn dieses aus sachlichen Gründen, insbesondere aufgrund der räumlichen oder apparativen Ausstattung geboten ist.

§ 11 Studienfachberatung

- (1) ¹Im Rahmen der Einführungstage zum ersten Fachsemester findet eine erste Informationsveranstaltung zum Studiengang, zu den Zielen, den Inhalten und dem Aufbau des Studiums statt. ²Alle Dokumente, die die Studien- und Prüfungsordnung, den Regelstudienplan und den Modulkatalog betreffen, stehen auf der Homepage der Fakultät zur Verfügung.
- (2) ¹Für die Studienfachberatung stehen an der Fakultät für Mathematik und Informatik Studienfachberater zur Verfügung. ²Diese nehmen die Aufgaben gemäß § 5 Abs. 4 und § 17 Abs.4 der Prüfungsordnung wahr. ³Sie beraten in spezifischen Fragen diesen Studiengang betreffend die Studierenden mit dem Ziel, dass diese ihr Studium auf einen erfolgreichen Studienabschluss hin gestalten und in der Regelstudienzeit beenden können.
- (3) Darüber hinaus wird jedem Studierenden von der Fakultät für Mathematik und Informatik aus dem Kreis der Lehrenden ein Mentor zugeordnet, der die individuelle fachliche Beratung für diesen Studierenden dauerhaft erbringt.
- (4) Auskünfte, die die Studien- und Prüfungsordnung, den Regelstudienplan und den Modulkatalog betreffen, werden nur durch das Prüfungsamt der Fakultät für Mathematik und Informatik verbindlich erteilt.
- (5) Für nicht fachspezifische Studienprobleme steht die Zentrale Studienberatung der Friedrich-Schiller-Universität zur Verfügung.

§ 12 Evaluierung des Lehrangebots und Qualitätssicherung

- (1) ¹Die Fakultät fühlt sich einer laufenden Aktualisierung und Verbesserung des Lehrangebots verpflichtet. ²Die Studienkommission der Fakultät evaluiert in regelmäßigen Abständen unter Berücksichtigung der Entwicklung des Faches, der beruflichen Anforderungen, der Leistungen der Studierenden in den Prüfungen und der realen Studienzeiten den Regelstudienplan und das Modulangebot. ³Der Regelstudienplan und der Modulkatalog werden jeweils rechtzeitig zu Studienjahresbeginn aktualisiert und bekannt gegeben.
- (2) ¹Darüber hinaus werden in Zusammenarbeit mit der Fachschaft Mathematik regelmäßig in jedem Semester Lehrevaluationen durchgeführt, die mit den beteiligten Lehrenden besprochen und im Rat der Fakultät ausgewertet werden. ²Ziel dieser Evaluationen ist es, die Lehrveranstaltungen individuell zu optimieren und die Studierbarkeit des Bachelor-Studiengangs insbesondere im Hinblick auf die Akzeptanz seitens der Studierenden, die Studieninhalte und die Einhaltung der Regelstudienzeit zu verbessern.

§ 13 Gleichstellungsklausel

Status- und Funktionsbezeichnungen nach dieser Ordnung gelten gleichermaßen in der weiblichen und in der männlichen Form.

§ 14 Inkrafttreten, Übergangsbestimmungen

- (1) Die Änderung der Studienordnung gemäß Artikel 1 tritt nach ihrer Bekanntmachung im Verkündungsblatt der Friedrich-Schiller-Universität Jena zum 1. Oktober 2015 in Kraft.
- (2) Die Änderung der Studienordnung für den Studiengang Mathematik mit dem Abschluss Bachelor of Science gilt nach ihrem Inkrafttreten für die Studierenden, die zum Wintersemester 2015/16 ihr Studium im Studiengang Mathematik mit dem Abschluss Bachelor of Science aufnehmen.
- (3) Studierende, die ihr Studium im Studiengang Mathematik mit dem Abschluss Bachelor of Science vor Inkrafttreten der Zweiten Änderung der Studienordnung aufgenommen haben, können wählen, ob sie ihr Studium nach der ab dem Inkrafttreten dieser Änderungsordnung oder in der bis dahin geltenden Fassung beenden wollen. Wenn sie ihr Studium in der ab dem Inkrafttreten dieser Änderungsordnung geltenden Ordnung beenden wollen, ist ein entsprechender Antrag innerhalb eines Jahres an den Prüfungsausschuss zu stellen. Die bisher erbrachten Leistungen werden in diesem Fall anerkannt.

Jena, den 6. Mai 2015

Prof. Dr. Walter Rosenthal

Präsident der Friedrich-Schiller-Universität Jena

Anhang 1 Nebenfach-Bestimmungen

Die zulässigen Nebenfächer sind:

- Informatik
- Linguistik mit Schwerpunkt Computerlinguistik/Sprachtechnologie
- Ökologie
- Philosophie
- Physik
- Psychologie
- Wirtschaftswissenschaften
- Computational Neuroscience
- Soziologie

Laut Studienordnung § 7 Abs. 5 sind im gewählten Nebenfach mindestens 15 LP und höchstens 24 LP zu erwerben.

Manche Nebenfächer enthalten Module, die belegt werden müssen, sofern dieses Nebenfach gewählt wird. In den Nebenfach-Beschreibungen werden solche Module als Pflichtmodule bezeichnet. Sie sind aber nicht zu belegen, wenn ein anderes Nebenfach gewählt wird.

Informatik

Zu belegen sind Module aus dem Bachelor-Studiengang Informatik im Umfang von mindestens 15 LP. Dabei hat der Studierende selbst darauf zu achten, für die gewählten Module die nötigen Voraussetzungen zu erfüllen.

Dabei sind alle Module außer den folgenden zugelassen:

- Module zur Vermittlung von mathematischen Grundlagen
- Module, die der Studierende im Rahmen des Wahlpflicht-Bereiches Mathematik belegt.

Zwei kanonische Möglichkeiten für die Modulwahl – jeweils im Umfang von 24 LP - sind:

a)	FMI-IN0025 FMI-IN0075 FMI-IN0076	Grundlagen informatischer Problemlösung Objektorientierte Programmierung Deklarative Programmierung	(9 LP) (5 LP) (4 LP)
	FMI-IN0047	Rechnerstrukturen	(6 LP)
b)	FMI-IN0001	Algorithmen und Datenstrukturen	(9 LP)
	FMI-IN0005	Automaten und Berechenbarkeit	(9 LP)
	FMI-IN0022	Grundlagen der technischen Informatik	(6 LP)

Linguistik mit Schwerpunkt Computerlinguistik/Sprachtechnologie

Das Nebenfach hat einen Umfang von 30 LP und besteht ausschließlich aus den unten genannten Pflichtmodulen. Wer dieses Nebenfach erfolgreich belegt, erwirbt sämtliche Leistungspunkte aus dem Bereich "Nebenfach und Allgemeine Schlüsselqualifikationen": denn die Module zur Deutschen Sprache dienen den Allgemeinen Schlüsselqualifikationen.

•	B-GSW-01	Einführung in die Phonetik und Phonologie	
		der deutschen Sprache (Laut)	(5 LP)
•	B-GSW-02	Einführung in die Lexikologie (Wort)	(5 LP)
•	B-GSW-03	Einf. in die Grammatiktheorie I (Satz I)	(5 LP)
•	B-GSW-04	Einführung in die Textlinguistik (Text)	(5 LP)
•	B-GSW-12	Einführung in die Computerlinguistik	
		und Sprachtechnologie	(10 LP)

Ökologie

Pflichtmodul:

• Ök NF 1: Grundlagen der Ökologie (9 LP)

Wahlpflichtbereich: Module aus der folgenden Liste im Umfang von mindestens 6 LP und höchstens 15 LP:

•	Ök NF 2.1	Natur- und Umweltschutz	(9 LP)
•	Ök NF 2.2	Pflanzenökologie 1	(6 LP), oder
	Ök NF 2.22	Pflanzenökologie 1+2	(9 LP)
•	Ök NF 2.3	Humanökologie	(6 LP)
•	Ök NF 2.4	Theoretische Ökologie 1	(6 LP), oder
	Ök NF 2.44	Theoretische Ökologie 1+2	(9 LP)
•	Ök NF 2.5	Natur- und Umweltschutz 2	(6 LP)
•	Ök NF 2.6	Mathematische Biologie 1	(6 LP), oder
	Ök NF 2.66	Mathematische Biologie 1+2	(12 LP)

Philosophie

Das Nebenfach kann im Umfang von bis zu 20 LP oder bis zu 30 LP studiert werden. Im letzteren Fall werden auch die Allgemeinen Schlüsselqualifikationen in der Philosophie belegt.

Pflichtmodul:

• BA-Phi 1.1 Einführung in die Philosophie (10 LP)

Wahlpflicht: Mindestens eins der folgenden Module (aber höchstens eins der Schwerpunkt-Module):

•	BA-Phi 1.2 oder	ASQ-Phi 1	Logik und Argumentationslehre	(10 LP)
•	BA-Phi 2.1	Praktische Philo	osophie	(10 LP)
•	BA-Phi 2.2	Theoretische Pl	hilosophie	(10 LP)
•	BA-Phi 3.1	Geschichte der	Philosophie	(10 LP)
•	BA-Phi 3.2	Fachübergreife	nde Themen der Philosophie	(10 LP)
•	LA-Phi 3.2	Schwerpunkt I		(5 LP)
•	LA-Phi 3.3	Schwerpunkt II		(5 LP)

Das Modul "Logik und Argumentationslehre" kann entweder als Nebenfach-Modul oder als Modul zum Erwerb Allgemeiner Schlüsselqualifikationen belegt werden.

Es wird empfohlen, erst dann ein Schwerpunkt-Modul zu belegen, wenn man möglichst viele Philosophie-Module belegt hat. Im Bachelor-Studium sollte höchstens eins der Schwerpunkt-Module belegt werden.

Von den Wahlpflichtmodulen sind "Logik und Argumentationslehre" sowie "Theoretische Philosophie" besonders geeignet für das Nebenfach eines Mathematikstudiums.

Physik

Zu belegen sind Module aus dem Bachelor-Studiengang Physik im Umfang von 16 bis 24 LP. Dabei hat der Studierende selbst darauf zu achten, für die gewählten Module die nötigen Voraussetzungen zu erfüllen. Die folgenden Pflicht- bzw. Wahlpflichtmodule sind zu belegen bzw. stehen zur Auswahl:

1. Pflichtmodule

128BU111	Mathematische Methoden der Physik I	(4 LP)
128BE111	Grundkurs Experimentalphysik I (Mechanik, Wärmelehre)	(8 LP)
128BP111	Grundpraktikum Experimentalphysik I	(4 LP)

2. Wahlpflichtmodule

128BE211	Grundkurs Experimentalphysik II (Elektrodynamik, Optik)	(8 LP)
128BT211	Theoretische Mechanik	(8 LP)

Psychologie

Das Nebenfach hat einen Umfang von 20 LP und besteht ausschließlich aus den beiden unten genannten Pflichtmodulen. Ein Teil des zweiten Moduls besteht aus einem Seminar: hier können Kapazitätsprobleme auftreten.

•	PsyN-P1	Einführung und Methoden der Psychologie	(10 LP)
•	PsyN-P2	Allgemeine Psychologie	(10 LP)

Wirtschaftswissenschaften

Im folgenden bedeutet die Abkürzung BM "Basis-Modul". Zu belegen sind als Pflicht die beiden Module

•	BM Einführung in die Betriebswirtschaftslehre	(6 LP)
•	BM Einführung in die Volkswirtschaftslehre	(6 LP)

und weitere Wahlpflicht-Module im Umfang von mindestens 3 LP aus folgender Liste:

•	BM Grundlagen des Marketing-Management	(6 LP)
•	BM Operations Management	(6 LP)
•	BM Investition, Finanzierung und Kapitalmarkt	(6 LP)
•	BM Buchführung	(3 LP)
•	BM Rechnungslegung und Controlling	(6 LP)
•	BM Management	(6 LP)
•	BM Planung und Entscheidung	(6 LP)
•	BM Einführung in die Wirtschaftsinformatik	(6 LP)
•	BM Empirische und Experimentelle Wirtschaftsforschung	(6 LP)
•	BM Mikroökonomik	(5 LP)
•	BM Makroökonomik	(5 LP)
•	BM Finanzwissenschaft	(5 LP)

Zwei kanonische Möglichkeiten für die Modulwahl bei einem Gesamtumfang von 24 LP sind:

a)	BM Operations Management	(6 LP)
	BM Planung und Entscheidung	(6 LP)
b)	BM Empirische und Experimentelle Wirtschaftsforschung	(6 LP)
	BM Grundlagen des Marketing-Management	(6 LP)

Computational Neuroscience

Zu belegen sind Pflichtmodule im Umfang von 24 LP.

•	MED-CNS009 Grundlagen der Neurophysiologie	(4 LP)
•	MED-CNS018 Verfahren und Messtechniken der experimentellen Neurophysiologie	(2 LP)
•	MED-CNS001 Bildgebende Verfahren und Systeme I	(3 LP)
•	MED-CNS014 Signal- und systemtheoretische Analyse elektrophysiologischer Daten I	(4 LP)
•	MED-CNS002 Bildgebende Verfahren und Systeme II	(2 LP)
•	MED-CNS015 Signal- und systemtheoretische Analyse elektrophysiologischer Daten II	(3 LP)
•	MED-CNS016 Spezialverfahren der Bildverarbeitung	(3 LP)
•	MED-CNS008 Grundlagen der Modellierung neuronaler Systeme	(3 LP)

Soziologie

Das Nebenfach kann im Umfang von bis zu 20 LP oder bis zu 30 LP studiert werden. Im letzteren Fall werden auch die Allgemeinen Schlüsselqualifikationen in der Soziologie belegt.

BASOZ 11	Einführung in die Soziologie	(10 LP)		
Soziologische	Theorie			
BASOZ 21 BASOZ 22	Soziologische Theorie I Soziologische Theorie II	(10 LP) (5 LP)		
Methoden /Sta	Methoden /Statistik			
BASOZ 31 BASOZ 33	Methoden der empirischen Sozialforschung I Statistik	(10 LP) (10 LP)		
Spezielle Sozie	ologien			
BASOZ 41 BASOZ 43 BASOZ 44 BASOZ 45	Spezielle Soziologien Spezielle Soziologien I für Ergänzungsfach und Lehramt Spezielle Soziologien II für Ergänzungsfach und Lehramt Spezielle Soziologien III für Ergänzungsfach und Lehramt	(5 LP) (10 LP) (10 LP) (5 LP)		

Das Modul BASOZ 11 Einführung in die Soziologie wird dringend als Einführungs- und Grundlagenmodul empfohlen. Anschließend erscheinen o.g. Kombinationen sinnvoll.

Anhang 2

Vertiefungspläne

Die wählbaren Vertiefungsrichtungen sind: Algebra, Analysis, Geometrie, Numerische Mathematik/Wissenschaftliches Rechnen, Optimierung, Stochastik, Algorithmik (Theoretische Informatik). Im gewählten Vertiefungsfach sollen die Studierenden nach Studienordnung § 7 Abs. 4 Lehrveranstaltungen im Umfang von mindestens 15 LP nachweisen und außerdem an einem Seminar teilnehmen.

Algebra

Am Anfang der Phase "Erweiterung und Weiterführung" wird allen Studierenden das Wahlpflichtmodul

Algebra 1	(9 LP)
Algebraische Topologie	(9 LP)
 Angewandte Probleme von Algebra und Geometrie 	(6 LP)

als ein Einblick in das Fach Algebra empfohlen. Für die Vertiefung Algebra sollten weitere Wahlpflichtmodule ausgewählt werden aus:

•	Algebra 2		(9 LP)
•	Codierungsthe	orie	(6/9 LP)
•	Gruppentheori	e	(9 LP)
•	Topologie 1		(9 LP)
•	FMI-MA0142	Elementare Zahlentheorie	(6 LP)
•	FMI-MA0112	Kombinatorik	(6 LP)

Außerdem ist das Seminar Algebra – Bachelor zu belegen (3 LP).

Analysis

Am Anfang der Phase "Erweiterung und Weiterführung" wird allen Studierenden das Wahlpflichtmodul

• Analysis 3 (9 LP)

empfohlen. Für die Vertiefung Analysis sollten Wahlpflichtmodule ausgewählt werden aus:

•	Approximationstheorie 1	(9 LP)
•	Diskrete Schrödingeroperatoren	(6 LP)
•	Distributionen	(3 LP)
•	Fourieranalysis 1	(6 LP)
•	Funktionentheorie 1	(6 LP)
•	Höhere Analysis 1	(9 LP)
•	Stabilität dynamischer Systeme 1	(6/9 LP)
•	Sturm-Liouvillesche Eigenwertprobleme	(3 LP)

Außerdem ist das Seminar Analysis – Bachelor zu belegen (3 LP).

Geometrie

Eine Auswahl von Modulen aus:

Klassische Differentialgeometrie	(6/9 LP)
Konvexe und metrische Geometrie	(6/9 LP)
Mathematische Methoden der klassischen Mechanik	(6/9 LP)
Topologie 1	(9 LP)
Algebraische Topologie	(9 LP)
Angewandte Probleme von Algebra und Geometrie	(3/6 LP)
Fraktale Geometrie	(6/9 LP)
 Polyedergeometrie 	(3 LP)
FMI-MA0407 Clifford-Algebren	(6 LP)

Außerdem ist das Seminar Geometrie – Bachelor zu belegen (3 LP). Bei manchen Modulen wird die Stochastik 2 (Maßtheorie) vorausgesetzt.

Numerische Mathematik/Wissenschaftliches Rechnen

In dieser Vertiefungsrichtung ist eine Auswahl der Module:

•	Approximationstheorie 1	(9 LP)
•	Numerik Gewöhnlicher Differentialgleichungen 1	(6 LP)
•	Numerik von Randwertproblemen	(6/9 LP)
•	Parallele Algorithmen für lineare Gleichungssysteme	(9 LP)
•	Weiterführende Techniken des Wissenschaftlichen Rechnens	(6 LP)
•	Wissenschaftliches Rechnen und Modellbildung	(6 LP)
•	Matrizen-Numerik	(6/9 LP)

im geforderten Umfang von 15 LP zu treffen. Außerdem ist das Seminar Numerische Mathematik – Bachelor (3 LP) oder das Seminar Wissenschaftliches Rechnen – Bachelor (3 LP) zu belegen.

Optimierung

Zu belegen ist das Modul

•	Lineare Optimierung	(9 LP)
und we	eitere Module aus:	

•	Praktische Optimierung	(3 LP)
•	Einführung in die Diskrete Optimierung	(6 LP)
•	Einführung in die Nichtlineare Optimierung	(6 LP)
•	Diskrete Optimierung	(9 LP)
•	Nichtlineare Optimierung	(9 LP)

Außerdem ist das Seminar Optimierung – Bachelor zu belegen (3 LP).

Stochastik

Zur Auswahl stehen die folgenden Wahlpflichtmodule:

•	Stochastik 2		(9 LP)
•	Finanzmathem	natik 1	(6 LP)
•	Ökonometrie		(9 LP)
•	FMI-MA0706	Praktische Finanzmathematik 1	(3 LP)
•	FMI-MA0707	Einführung in die Versicherungsmathematik	(3 LP)

Außerdem ist das Seminar Wahrscheinlichkeitstheorie – Bachelor oder das Seminar Statistik – Bachelor zu belegen (3 LP).

Algorithmik (Theoretische Informatik)

Als Einstieg wird allen Studierenden folgendes Wahlpflichtmodul empfohlen:

• Grundlagen der Algorithmik (6 LP)

Für die Vertiefungsrichtung Algorithmik sind weitere Wahlpflichtmodule auszuwählen aus:

•	Algorithmen und Datenstrukturen	(9 LP)
•	Algorithmische Geometrie	(6 LP)
•	Algorithmische Grundlagen des maschinellen Lernens	(6 LP)
•	Automaten und Berechenbarkeit	(9 LP)
•	Kryptologie	(6 LP)
•	Logiksysteme	(6 LP)

Außerdem ist das Seminar Theoretische Informatik/Algorithmik – Bachelor zu belegen (3 LP).